您的位置:網(wǎng)站首頁 > 優(yōu)秀論文 > 正文
論電力系統(tǒng)自動(dòng)化中智能技術(shù)的應(yīng)用-機(jī)械論文
作者:唐亮來源:原創(chuàng)日期:2012-08-22人氣:1150
模糊方法使控制十分簡單而易于掌握,所以在家用電器中也顯示出優(yōu)越性。建立模型來實(shí)現(xiàn)控制是現(xiàn)代比較先進(jìn)的方法,但建立常規(guī)的數(shù)學(xué)模型,有時(shí)十分困難,而建立模糊關(guān)系模型十分簡易,實(shí)踐證明它有巨大的優(yōu)越性。模糊控制理論的應(yīng)用非常廣泛。例如我們?nèi)粘K玫碾姛釥t、電風(fēng)扇等電器。這里介紹斯洛文尼亞學(xué)者用模糊邏輯控制器改進(jìn)常規(guī)恒溫器的例子。電熱爐一般用恒溫器(thermostat)來保持幾擋溫度,以供烹飪者選用,如60,80,100,140℃。斯洛文尼亞現(xiàn)有的恒溫器在100℃以下的靈敏度為±7℃,即控制器對(duì)±7℃以內(nèi)的溫度變化不反應(yīng);在100℃以上,靈敏度為±15℃。因此在實(shí)際應(yīng)用中,有兩個(gè)問題:①冷態(tài)啟動(dòng)時(shí)有一個(gè)越過恒溫值的躍升現(xiàn)象;②在恒溫應(yīng)用中有圍繞恒溫?cái)[動(dòng)振蕩的問題。改用模糊控制器后,這些現(xiàn)象基本上都沒有了。模糊控制的方法很簡單,輸入量為溫度及溫度變化兩個(gè)語言變量。每個(gè)語言的論域用5組語言變量互相跨接來描述。因此輸出量可以用一張二維的查詢表來表示,即5×5=25條規(guī)則,每條規(guī)則為一個(gè)輸出量,即控制量。應(yīng)用這樣一個(gè)簡單的模糊控制器后,冷態(tài)加熱時(shí)躍升超過恒溫值的現(xiàn)象消失了,熱態(tài)中圍繞恒溫值的擺動(dòng)也沒有了,還得到了節(jié)電的效果。在熱態(tài)控制保持100℃的情況下,33min內(nèi),若用恒溫器則耗電0.1530kW·h,若用模糊邏輯控制,則耗電0.1285kW·h,節(jié)電約16.3%,是一個(gè)不小的數(shù)目。在冷態(tài)加熱情況下,若用恒溫器加熱,則能很快到達(dá)100℃,只耗電0.2144kW·h,若用模糊邏輯控制,達(dá)到100℃時(shí)需耗電0.2425kW·h。但恒溫器振蕩穩(wěn)定到100℃的過程,耗電0.1719kW·h,而模糊邏輯控制略有微小的擺動(dòng),達(dá)到穩(wěn)定值只耗電0.083kW·h??傆?jì)達(dá)100℃恒溫的耗電量,恒溫器需用0.3863kW·h,模糊邏輯控制需用0.3555kW·h,節(jié)電約15.7%。
二、神經(jīng)網(wǎng)絡(luò)控制
人工神經(jīng)網(wǎng)絡(luò)從1943年出現(xiàn),經(jīng)歷了六、七十年代的研究低潮發(fā)展到現(xiàn)在,在模型結(jié)構(gòu)、學(xué)習(xí)算法等方面取得了大量的研究成果。神經(jīng)網(wǎng)絡(luò)之所以受到人們的普遍關(guān)注,是由于它具有本質(zhì)的非線性特性、并行處理能力、強(qiáng)魯棒性以及自組織自學(xué)習(xí)的能力。神經(jīng)網(wǎng)絡(luò)是由大量簡單的神經(jīng)元以一定的方式連接而成的。神經(jīng)網(wǎng)絡(luò)將大量的信息隱含在其連接權(quán)值上,根據(jù)一定的學(xué)習(xí)算法調(diào)節(jié)權(quán)值,使神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)從m維空間到n維空間復(fù)雜的非線性映射。目前神經(jīng)網(wǎng)絡(luò)理論研究主要集中在神經(jīng)網(wǎng)絡(luò)模型及結(jié)構(gòu)的研究、神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法的研究、神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)問題等。
三、專家系統(tǒng)控制
專家系統(tǒng)在電力系統(tǒng)中的應(yīng)用范圍很廣,包括對(duì)電力系統(tǒng)處于警告狀態(tài)或緊急狀態(tài)的辨識(shí),提供緊急處理,系統(tǒng)恢復(fù)控制,非常慢的狀態(tài)轉(zhuǎn)換分析,切負(fù)荷,系統(tǒng)規(guī)劃,電壓無功控制,故障點(diǎn)的隔離,配電系統(tǒng)自動(dòng)化,調(diào)度員培訓(xùn),電力系統(tǒng)的短期負(fù)荷預(yù)報(bào),靜態(tài)與動(dòng)態(tài)安全分析,以及先進(jìn)的人機(jī)接口等方面。雖然專家系統(tǒng)在電力系統(tǒng)中得到了廣泛的應(yīng)用,但仍存在一定的局限性,如難以模仿電力專家的創(chuàng)造性;只采用了淺層知識(shí)而缺乏功能理解的深層適應(yīng);缺乏有效的學(xué)習(xí)機(jī)構(gòu),對(duì)付新情況的能力有限;知識(shí)庫的驗(yàn)證困難;對(duì)復(fù)雜的問題缺少好的分析和組織工具等。因此,在開發(fā)專家系統(tǒng)方面應(yīng)注意專家系統(tǒng)的代價(jià)/效益分析方法問題,專家系統(tǒng)軟件的有效性和試驗(yàn)問題,知識(shí)獲取問題,專家系統(tǒng)與其他常規(guī)計(jì)算工具相結(jié)合等問題。
四、線性最優(yōu)控制
最優(yōu)控制是現(xiàn)代控制理論的一個(gè)重要組成部分,也是將最優(yōu)化理論用于控制問題的一種體現(xiàn)。線性最優(yōu)控制是目前諸多現(xiàn)代控制理論中應(yīng)用最多,最成熟的一個(gè)分支。盧強(qiáng)等人提出了利用最優(yōu)勵(lì)磁控制手段提高遠(yuǎn)距離輸電線路輸電能力和改善動(dòng)態(tài)品質(zhì)的問題,取得了一系列重要的研究成果。該研究指出了在大型機(jī)組方面應(yīng)直接利用最優(yōu)勵(lì)磁控制方式代替古典勵(lì)磁方式。目前最優(yōu)勵(lì)磁控制的控制效果。另外,最優(yōu)控制理論在水輪發(fā)電機(jī)制動(dòng)電阻的最優(yōu)時(shí)間控制方面也獲得了成功的應(yīng)用。電力系統(tǒng)線性最優(yōu)控制器目前已在電力生產(chǎn)中獲得了廣泛的應(yīng)用,發(fā)揮著重要的作用。但應(yīng)當(dāng)指出,由于這種控制器是針對(duì)電力系統(tǒng)的局部線性化模型來設(shè)計(jì)的,在強(qiáng)非線性的電力系統(tǒng)中對(duì)大干擾的控制效果不理想。
五、綜合智能系統(tǒng)
綜合智能控制一方面包含了智能控制與現(xiàn)代控制方法的結(jié)合,
如模糊變結(jié)構(gòu)控制,自適應(yīng)或自組織模糊控制,自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制,神經(jīng)網(wǎng)絡(luò)變結(jié)構(gòu)控制等。另一方面包含了各種智能控制方法之間的交叉結(jié)合,對(duì)電力系統(tǒng)這樣一個(gè)復(fù)雜的大系統(tǒng)來講,綜合智能控制更有巨大的應(yīng)用潛力?,F(xiàn)在,在電力系統(tǒng)中研究得較多的有神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的結(jié)合,專家系統(tǒng)與模糊控制的結(jié)合,神經(jīng)網(wǎng)絡(luò)與模糊控制的結(jié)合,神經(jīng)網(wǎng)絡(luò)、模糊控制與自適應(yīng)控制的結(jié)合等方面。神經(jīng)網(wǎng)絡(luò)適合于處理非結(jié)構(gòu)化信息,而模糊系統(tǒng)對(duì)處理結(jié)構(gòu)化的知識(shí)更有效。因此,模糊邏輯和人工神經(jīng)網(wǎng)絡(luò)的結(jié)合有良好的技術(shù)基礎(chǔ)。這兩種技術(shù)從不同角度服務(wù)于智能系統(tǒng),人工神經(jīng)網(wǎng)絡(luò)主要應(yīng)用在低層的計(jì)算方法上,模糊邏輯則用以處理非統(tǒng)計(jì)性的不確定性問題,是高層次(語義層或語言層)的推理,這兩種技術(shù)正好起互補(bǔ)作用。神經(jīng)網(wǎng)絡(luò)把感知器送來的大量數(shù)據(jù)進(jìn)行安排和解釋,而模糊邏輯則提供應(yīng)用和挖掘潛力的框架。因此將二者結(jié)合起來的研究成果較多。
除了上述方法,在電力系統(tǒng)中還應(yīng)用了自適應(yīng)控制、變結(jié)構(gòu)控制、H∞魯棒控制、微分幾何控制等其它方法??傊?,智能技術(shù)的廣泛運(yùn)用推動(dòng)了電力系統(tǒng)的自動(dòng)化進(jìn)程。我們相信隨著人們對(duì)各種智能控制理論研究的進(jìn)一步深入,它們之間的聯(lián)系也會(huì)更加緊密,相信利用各自優(yōu)勢(shì)而組成的綜合智能控制系統(tǒng)會(huì)對(duì)電力系統(tǒng)起到更加重要的作用。
二、神經(jīng)網(wǎng)絡(luò)控制
人工神經(jīng)網(wǎng)絡(luò)從1943年出現(xiàn),經(jīng)歷了六、七十年代的研究低潮發(fā)展到現(xiàn)在,在模型結(jié)構(gòu)、學(xué)習(xí)算法等方面取得了大量的研究成果。神經(jīng)網(wǎng)絡(luò)之所以受到人們的普遍關(guān)注,是由于它具有本質(zhì)的非線性特性、并行處理能力、強(qiáng)魯棒性以及自組織自學(xué)習(xí)的能力。神經(jīng)網(wǎng)絡(luò)是由大量簡單的神經(jīng)元以一定的方式連接而成的。神經(jīng)網(wǎng)絡(luò)將大量的信息隱含在其連接權(quán)值上,根據(jù)一定的學(xué)習(xí)算法調(diào)節(jié)權(quán)值,使神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)從m維空間到n維空間復(fù)雜的非線性映射。目前神經(jīng)網(wǎng)絡(luò)理論研究主要集中在神經(jīng)網(wǎng)絡(luò)模型及結(jié)構(gòu)的研究、神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法的研究、神經(jīng)網(wǎng)絡(luò)的硬件實(shí)現(xiàn)問題等。
三、專家系統(tǒng)控制
專家系統(tǒng)在電力系統(tǒng)中的應(yīng)用范圍很廣,包括對(duì)電力系統(tǒng)處于警告狀態(tài)或緊急狀態(tài)的辨識(shí),提供緊急處理,系統(tǒng)恢復(fù)控制,非常慢的狀態(tài)轉(zhuǎn)換分析,切負(fù)荷,系統(tǒng)規(guī)劃,電壓無功控制,故障點(diǎn)的隔離,配電系統(tǒng)自動(dòng)化,調(diào)度員培訓(xùn),電力系統(tǒng)的短期負(fù)荷預(yù)報(bào),靜態(tài)與動(dòng)態(tài)安全分析,以及先進(jìn)的人機(jī)接口等方面。雖然專家系統(tǒng)在電力系統(tǒng)中得到了廣泛的應(yīng)用,但仍存在一定的局限性,如難以模仿電力專家的創(chuàng)造性;只采用了淺層知識(shí)而缺乏功能理解的深層適應(yīng);缺乏有效的學(xué)習(xí)機(jī)構(gòu),對(duì)付新情況的能力有限;知識(shí)庫的驗(yàn)證困難;對(duì)復(fù)雜的問題缺少好的分析和組織工具等。因此,在開發(fā)專家系統(tǒng)方面應(yīng)注意專家系統(tǒng)的代價(jià)/效益分析方法問題,專家系統(tǒng)軟件的有效性和試驗(yàn)問題,知識(shí)獲取問題,專家系統(tǒng)與其他常規(guī)計(jì)算工具相結(jié)合等問題。
四、線性最優(yōu)控制
最優(yōu)控制是現(xiàn)代控制理論的一個(gè)重要組成部分,也是將最優(yōu)化理論用于控制問題的一種體現(xiàn)。線性最優(yōu)控制是目前諸多現(xiàn)代控制理論中應(yīng)用最多,最成熟的一個(gè)分支。盧強(qiáng)等人提出了利用最優(yōu)勵(lì)磁控制手段提高遠(yuǎn)距離輸電線路輸電能力和改善動(dòng)態(tài)品質(zhì)的問題,取得了一系列重要的研究成果。該研究指出了在大型機(jī)組方面應(yīng)直接利用最優(yōu)勵(lì)磁控制方式代替古典勵(lì)磁方式。目前最優(yōu)勵(lì)磁控制的控制效果。另外,最優(yōu)控制理論在水輪發(fā)電機(jī)制動(dòng)電阻的最優(yōu)時(shí)間控制方面也獲得了成功的應(yīng)用。電力系統(tǒng)線性最優(yōu)控制器目前已在電力生產(chǎn)中獲得了廣泛的應(yīng)用,發(fā)揮著重要的作用。但應(yīng)當(dāng)指出,由于這種控制器是針對(duì)電力系統(tǒng)的局部線性化模型來設(shè)計(jì)的,在強(qiáng)非線性的電力系統(tǒng)中對(duì)大干擾的控制效果不理想。
五、綜合智能系統(tǒng)
綜合智能控制一方面包含了智能控制與現(xiàn)代控制方法的結(jié)合,
如模糊變結(jié)構(gòu)控制,自適應(yīng)或自組織模糊控制,自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制,神經(jīng)網(wǎng)絡(luò)變結(jié)構(gòu)控制等。另一方面包含了各種智能控制方法之間的交叉結(jié)合,對(duì)電力系統(tǒng)這樣一個(gè)復(fù)雜的大系統(tǒng)來講,綜合智能控制更有巨大的應(yīng)用潛力?,F(xiàn)在,在電力系統(tǒng)中研究得較多的有神經(jīng)網(wǎng)絡(luò)與專家系統(tǒng)的結(jié)合,專家系統(tǒng)與模糊控制的結(jié)合,神經(jīng)網(wǎng)絡(luò)與模糊控制的結(jié)合,神經(jīng)網(wǎng)絡(luò)、模糊控制與自適應(yīng)控制的結(jié)合等方面。神經(jīng)網(wǎng)絡(luò)適合于處理非結(jié)構(gòu)化信息,而模糊系統(tǒng)對(duì)處理結(jié)構(gòu)化的知識(shí)更有效。因此,模糊邏輯和人工神經(jīng)網(wǎng)絡(luò)的結(jié)合有良好的技術(shù)基礎(chǔ)。這兩種技術(shù)從不同角度服務(wù)于智能系統(tǒng),人工神經(jīng)網(wǎng)絡(luò)主要應(yīng)用在低層的計(jì)算方法上,模糊邏輯則用以處理非統(tǒng)計(jì)性的不確定性問題,是高層次(語義層或語言層)的推理,這兩種技術(shù)正好起互補(bǔ)作用。神經(jīng)網(wǎng)絡(luò)把感知器送來的大量數(shù)據(jù)進(jìn)行安排和解釋,而模糊邏輯則提供應(yīng)用和挖掘潛力的框架。因此將二者結(jié)合起來的研究成果較多。
除了上述方法,在電力系統(tǒng)中還應(yīng)用了自適應(yīng)控制、變結(jié)構(gòu)控制、H∞魯棒控制、微分幾何控制等其它方法??傊?,智能技術(shù)的廣泛運(yùn)用推動(dòng)了電力系統(tǒng)的自動(dòng)化進(jìn)程。我們相信隨著人們對(duì)各種智能控制理論研究的進(jìn)一步深入,它們之間的聯(lián)系也會(huì)更加緊密,相信利用各自優(yōu)勢(shì)而組成的綜合智能控制系統(tǒng)會(huì)對(duì)電力系統(tǒng)起到更加重要的作用。
欄目分類
熱門排行
推薦信息
- 大數(shù)據(jù)賦能大學(xué)生心理健康教育精準(zhǔn)實(shí)施
- 文化產(chǎn)業(yè)與旅游經(jīng)濟(jì)發(fā)展的雙向促進(jìn)
- 借力新媒體創(chuàng)新馬克思主義傳播范式
- 發(fā)揚(yáng)教育家精神 爭做新時(shí)代“大先生”
- 人工智能視域下思政教育工作圖景與路徑
- 數(shù)字化賦能高校藝術(shù)設(shè)計(jì)類專業(yè)OMO融合式教學(xué)創(chuàng)新研究
- 中國民間藝術(shù)在中職美術(shù)教學(xué)中的應(yīng)用探索
- 技術(shù)與藝術(shù)的交融——虛擬現(xiàn)實(shí)技術(shù)走進(jìn)數(shù)字媒體藝術(shù)課堂的教學(xué)研究
- 中國傳統(tǒng)造像中的寫實(shí)造型規(guī)律研究
- 文化自信視域下職業(yè)院校藝術(shù)鑒賞教學(xué)的美育浸潤行動(dòng)實(shí)踐研究
期刊知識(shí)
- 2025年中科院分區(qū)表已公布!Scientific Reports降至三區(qū)
- 2023JCR影響因子正式公布!
- 國內(nèi)核心期刊分級(jí)情況概覽及說明!本篇適用人群:需要發(fā)南核、北核、CSCD、科核、AMI、SCD、RCCSE期刊的學(xué)者
- 我用了一個(gè)很復(fù)雜的圖,幫你們解釋下“23版最新北大核心目錄有效期問題”。
- CSSCI官方早就公布了最新南核目錄,有心的人已經(jīng)拿到并且投入使用!附南核目錄新增期刊!
- 北大核心期刊目錄換屆,我們應(yīng)該熟知的10個(gè)知識(shí)點(diǎn)。
- 注意,最新期刊論文格式標(biāo)準(zhǔn)已發(fā)布,論文寫作規(guī)則發(fā)生重大變化!文字版GB/T 7713.2—2022 學(xué)術(shù)論文編寫規(guī)則
- 盤點(diǎn)那些評(píng)職稱超管用的資源,1,3和5已經(jīng)“絕種”了
- 職稱話題| 為什么黨校更認(rèn)可省市級(jí)黨報(bào)?是否有什么說據(jù)?還有哪些機(jī)構(gòu)認(rèn)可黨報(bào)?
- 《農(nóng)業(yè)經(jīng)濟(jì)》論文投稿解析,難度指數(shù)四顆星,附好發(fā)選題!